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LETTER TO THE EDITOR 

A lattice model for x-ray emission and absorption: the edge 
singularity 

V h i ) :  
Institut fiir Theoretische Physik C, Technische Hachschule Aachen, DSlOO Aachen, Federal 
Republic of Germany 

Received 18 June 1993 

AbstracL The model for %-my scattering known as the Mah-Naikres-De Dominicis model 
is extended Lo a finite concentradon of randomly distributed core electrons. A systematic. 
renormalized expansion for the phase shift of the imaginary-time Green function of ihe deep- 
level elecImns is  derived in the limit of high dimensions. i.e. within a dynamical mean-field 
theory. A global andytic expression inteplating between short- and longtime asymptotics 
is obtained. An algebraic singularity in the zero-temperature Green function for long lime3 
i a  revealed. ?he critical exponent is estimated and campared with that of NozGres and De 
Dominicis. 

An intensive theoretical investigation of x-ray absorption andemission spectm was launched 
after the discovery of edge anomalies in the soft x-ray region of photoemission spectra of 
metals [I]. The essence of this phenomenon can be summarized by a process where a core 
electron is excited into the conduction band whereby a transient elecbon-hole pair is created. 
This pair causes a collective rearrangement of the ground state of the conduction electrons 
on a long time scale. The simplest model for the description of the edge anomaly in the 
x-ray spectra was proposed by Mahan [Z] and is now often called the Mahan-Nozikres- 
De Dominicis (MND) model. It describes a system of a single localized (infinitely heavy) 
electron interacting with a Fermi sea of conduction electrons. The Hamiltonian of the MND 
model is 

where ?(k) (c^(k)) are creation (destruction) operators, respectively, for the conduction 
electrons with momentum k and kinetic energy €(IC). Eo is the atomic energy of a localized 
elecrron created (annihilated) by dt (d), respectively. The potential Vkkt describes the 
screened Coulomb interaction between the localized and the conduction electrons. The 
spin of the electron is unimportant here and can be neglected. The x-ray transition rate 
is a function of the time-dependent Green function of the core d electron which shows 
an dgebraic singularity in the MND model (I) .  There are several approaches to derive this 
‘edge singularity’. One can either use a many-body perturbation theory where the conduction 
electrons are scattered by a time-dependent potential due to the excited electron-hole pair 
[2,31, or one can sepamte the dynamics of the conduction electrons from that of the core 
electron [4]. In the €irst case the singularity is connected with the Anderson orthogonality 
catastrophe 151 and in the second case a singular integral equation determines the edge 
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behaviour of the propagator of the core quasiparticle [4]. In both derivations the edge 
singularity is tightly linked to the discontinuity of the electron disoibution at the Fermi 
level. 

The validity of the MND model is restricted to very low concentrations of core elt?" 
(fld N 0) or core holes (nd N 1). where the localized quasiparticles do not influence the 
equilibrium ground state of the conduction electrons. This is no Ionger the case if we 
increase the concentration of the heavy particles, e.g. by doping the system with randomly 
dislribuled impurities. A finile concenmtion of the deeplevel quasipanicles significantly 
changes the properties of the conduction electrons in the MND model. To be able to describe 
the effects of different macroscopic configurations of the core electrons on both the ground 
slate of the conducrion electrons and the x-ray spectra it is necessary to extend the MND 
Hamiltonian (l) ,  which explicitly treats the only core particle parlicipating in the x-ray 
scattering process, to a model explicitly dealing with an arbitmy macroscopic dishibution 
of the core electrons. If we approximate the screened Coulomb interaction V by a contact 
Hubbard term U we obtain the spinless Falicov-Kimball model [6J wifh the local d elecmns 
as the simplest lattice extension of the MND model. A natural question arises: does the edge 
singularity from the MND model also swive for this model with an arbitrary macroscopic 
concentration of core electrons, especially if the core elecmns may be randomly dislributed 
on diluted impurities? In the Falicov-KimbaJl model the quasiparticle pole of the conduction 
electrons at the Fermi energy is smeared out and the rorrelared conduction elecmns have 
a finite Lifetime. Hence none of the standard techniques from the MND problem can be used 
here. 

The aim of this paper is to answer the question about the existence of the MND- 
type singularity in a model with a macroscopic concentration of localized electrons. To 
this end we investigale the imaginary-time Green function of the local elecmns of the 
spinless Falicov-Kimball model with randomly distributed local electrons in the limit of 
high dimensions. We develop a new method yielding the long-time asymptotics wirhour 
any particular assumprion about the propagator -of the conduction elecmns. Furthermore 
we reveal the edge singulm'ty in  both the thermal and the spectral Green functions of the 
local electrons. 

The model to be investigated can be defined through a tight-binding Hamiltonian [6]: 

We choose the energies of the localized electrons E:' = &d with probability 1 - x  and &p = 00 

with probability x ,  lo simulate dilutlon of the core electrons. That is, only a portion (1  - x ) L  
of the total number L of the lattice sites can be occupied by the local d electrons. This 
randomness in the energies &,d causes no substantial complications in comparison with the 
pure Falicov-Kimball model. In the Limit of hiinice dimensions (d 4 ffi) at least, the 
disordered model can be solved in the same way as the non-random model [7]. The limit 
of high spatial dimensions is, in analogy to classical statistical mechanics, introduced to 
identify the exact solution of the model in d = CO with a comprehensive mean-field theory 
181. This limit simplifies the calculation by the suppression of spatial correlations due to the 
presence of infinitely many neighbours; accordingly the hopping amplitude must be scaled 
as I -+ c * / a  with r *  fixed (t* -E 1 ) .  In this way the average kinetic energy remains 
finite in high dimensions p]. The infinite-dimensional model with Hamiltonian (2) can be 
reduced to a problem of a single site embedded in a medium described by a homogeneous 
dynamical potential g&), the self-energy of the conduction elecmns. This potential as 
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well as the the configurationally averaged free energy can be calculated exactly for the 
model (2) in infinite dimensions (i.e. on a sophisticated mean-field level) 171. However, 
the exact analytic form of the Green function of the local clectrons, needed for the x-ray 
spectra, is not known. It can be formally represented by an infinite determinant [IO, 111 and 
for finite temperatures can be evaluated numerically [ I l l .  We need, however, an analytic 
expression for the Green function of the local electrons to be able to decide about the edge 
singularity. To obtain it, we construct the imaginary-time Green function in a formalism 
similar to the method of Nozieres and De Dominicis [4]. 

The configurationally averaged Green function of a local d electron can be written as a 
renormalized atomic propagator [ 10,l I] 

Gd(T, B ;  U) = -e(r)(n!exp[(p - ~ ( E P  - PI - s ~ ( s ;  U) + r&dr; U)]), (3) 

where fi  = l /kBT1 ke = 1, T E (0. B )  is the imaginary time, t$ = U1 + exp{-S[& - &; + 
&,@, U)]]D-' is the contigumtion-dependent density of the d electrons, p is the chemical 
potential and 

is the time-dependent phase shift Operators 

I&)l(t* 1 ' )  = S ( t  - t ' ) X ( O J ) ( t )  

tGfll(', IO = [GF' + &I-l(r - 1 ' )  

where xcos,(t)  is the characteristic function on the interval (0. r )  and 

is an effective local, imaginary-time propagator of the conduction electrons, with C, the 
self-energy and G, the averaged, site-diagonal part of the propagator of the conduction 
electrons. They are determined exactly from the averaged free energy [7]. Note that the 
interaction-induced energy shift &p(r, U) depends only on the averaged quantitias G, and 
C, and hence is the same for all random configurations of the d electrons. 

The main difficulty in the evaluation of the function Gd(T, p )  from (3) lies in the integral 
(4). Nozieres and De Dominicis [4] introduced a new function r6(A. 5;  I ,  1 ' )  satisfying an 
integral equation 

r8@, T ;  r ,  r') = s;a(1 - r' )  + h dr"Gfl(r - r")r6(A, T; I", 1 ' ) .  (5) I 0 

From rg(h. t; I ,  f ' )  the phase shifi &p(z, U) is defined as an integral over the interaction 
strength h: 
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They further converted (5). for real times at zero temperature, to a singular integral equation 
with a known solution by replacing the actual real-time propagator G& - it’) by its long- 
lime asymptotics (ir - i f - ’  [4]. This approach Cannot be applied here, since the imaginary 
part of the self-energy Ec does not vanish at the Fermi level and the conduction elect” 
do not form a Fermi liquid. The tilde generally denotes the frequency representation. 

Hence we must proceed differently here to obtain the long-time asymptotics of &p from 
(6). We first project the functions G&) and T,&, r, I ,  r3 onto the interval ( -r ,r)  and then 
extend lhem periodically on (-m, 03) so that the Fourier transformation on the interval 
(-r, t) can be applied to (5). This new periodicity does not inlluence the result, for only 
the values of r ~ ( h ,  r ;  I. I )  on the interval (0, r )  are relevant. Two important observations 
are worth noting. First, although the effective local propagator of the conduction elecuons 
G&) has fermionic character on the interval ( -p ,  p ) ,  i.e. Gp(r+p) = -G+&), its projection 
on (-T, T ) ,  the function Gp(q I), has no specific symmetry and contains conhibutions from 
both the fermionic and the bosonic Matsubara frequencies, on = nn/r.  Second, the Fourier 
representation does not diagonalize inlegral equation (5).  unless r = p. The integral in (5) 
mixes the fermionic and the bosonic degrees of freedom and hence (5) remains a matrix 
(integral) equation even in the Fourier representation. Nevertheless, it is more convenient 
to work in the frequency representation than in the time representation. 

The Fourier transform of (5) on the interval (-r,  r )  reads 

where 

f := (%lf 4- l)lI/r b := % l b Z / r  

are fermionic and bosonic Malsubara frequencies, respectively, on the interval ( -r ,  5 ) .  The 
frequency U = n n / t  is an inactive variable, 

:= 4 dr exp(ifr)Gp(r) 1: 
Ff,” := + [:dr dr’exp(i f I - i w i ’ ] r ~ ( L .  r;  1. r ’ )  

and analogously for the bosonic frequencies. The kernel 

- 2Hf.b := -2(if - i b - ’  

is the Fourier transform of the function sign(i) on (-r, t). In the case t = p, we obtain 
G b  = 0 and (7) reduces to a set of decoupled algebraic equations. 

we transform (7) into two Fredholm integral equations by separating Ff from F b .  A 
formal solution of these Fredholm equations is 
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where 

[ i ~ I / , f ,  '- .- - h2cfI(1).)4/r H/.b&b(A)Hb.l' 
6 

and 

G,/(A) := Gf/U - ACf ) .  

Analogous equations hold for the bosonic functions. The inversion of the maaices i t n  
and i ( b )  is calculated with respect to i,,," := T J , , , ~  so that the continuurn limit z + 00 is 
well defined. Only a special combination of the ~UII  two-frequency functions F p  and i 6 . y  

conhibutes to the phase shift & p ( t ,  U). It is obtained from the Fourier transform of (6) as  

Since the operators X(f1 and .?(a) cannot be diagonalized, it is not possible to 6nd the full  
solution to (8) and (9). However. we can systematically expand 2; and 2;; in powers 
of the matrix 

A% f (A) H f , b c b  (2) 

which is bounded for all values of h. In this way we define a renomalied expansion for 
&B(T, U) where the interaction strength U is no longer a small parameter. Akeady the 6rst 
few terms of the expansion exactly reproduce the asymptotics of &p(z, U) for short and 
long imaginary times r < p. The asymptotics for short times are rather simple, since this 
corresponds to the weak-coupling limit. The dominant conuibution in the long-imaginary- 
time limit generates the s function in the operators 2cn and .f(b). It is proportional to T ,  

while the other terms are of the order of unity. However, the matrix H1.b becomes singular 
in the limit r + 03, and diverges linearly along the diagonal. The singular integrals 
are then treated as principal value integrals and they may cause logarithmically singular 
comections to &-(T. U). They are not the most dominant in the h i t  z -+ 03, since the 
terms proporiional to Hj6 can diverge linearly in r .  Analysing (8) and (9) we find that 
only two terms, proportional to h and hZ, in the expansion of the integrand in (9) contain 
H;,b. The most dominant conbibution in the larger limit is then given by 

The A integration in the RHs of (10) can be performed explicitly and the sums over 
Matsubara fermionic and bosonic frequencies can be transformed rhrough contour integration 
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to integrals over real frequencies. We finally obtain the principal result of the paper: 

where 

I+(x + iq) := I ( x  + iq) - I(0 + iq) 

and 

with U = & I .  The analytically continued fermionic and bosonic functions G f ( z )  and &(Z) 

are defined as 

where 

and 



Letter to the Editor U 3 1  

is the zero-temperature Green function. Equations ( l l t ( 1 3 )  determine the phase shift of 
the thermal Green function of the local electmns in the FaJicov-Kimball model in Un i t e  
dimensions. Equation ( 1  1) is an approximate solution to (8) and (9) that correctly reproduces 
opposite asymptotics of short and long imaginary times. Apan from this, it is exact up to 
U 3  for any r and ,9 (z < ,9). 

We can now analyse the long-time asymptotics of the energy shift &~(z ,  U). We put 
,9 = ca and take the Limit z + ca. This order of Limits causes the effective interaction 
strength U to be reduced by a factor of two (g,~, Gb + g/2). In this long-time Limit the 
hrst and the hst two terms of (11) are of the order of unity and the second lerm is of the 
order of r - ' .  However, the integral itself diverges logarithmically in the limit r + CO. We 
hence have a non-analyticity in the next-to-leading order in the limit of large times. This is 
precisely the edge singulariry of the MND model [41. If we introduce a cut-off 5 in the first 
integral in the RHS of (10) we obtain an explicit expression for the logarithmically divergent 
term 

P ( r ,  U) = -(4/x2)[( URe&-iO+)l[l - iU&iO+)]] 

Equation (14) determines the logarithmic correction in the limit of large imaginary times. 
For the x-ray spectra, however, the real-time asymptotics are relevant. We cannot directly 
apply our method to the real-time Green function, since the Fourier coefficients of the 
function r &om (5) may not be well defined. Real times can, nevertheless, be reached 
through an analytic continuation (Wick rotation). Continuing (IO) to real times, we obtain 
for the logarithmic correction for  rea^ times r -+ it. If we put %,(U) = 0, we reduce 
the Falicov-Kimball model to the MND model. Expression (14) dilfers from the result of 
Nozibres and De Dominicis in all orders of the expansion in U, except for the lowest one, 
i.e. U*. This can be explained hy the fact that (14) is not exact, since the logarithmic 
corrections are only of the next-to-leading order in 5 ,  which is not exactly contained in the 
solution ( 1  I) .  A separate treatment of the case r = CO is necessary to derive the exact 
critical exponent. Such an investigation is presently in progress [121. 

To conclude, we have presented a new scheme yielding an analytic f a n  for the Green 
function of the local electrons in the diluted Falicov-Kimball model, the simplest model for 
the deep-level x-ray specha with a macroscopic concentration of core elecbons. We have 
proposed a renormalized. systematic expansion for the phase shift of this Gteen function 
and consmcted a global, approximate formula (11) interpolating between short and long 
times. We have derived, c o n b q  to the other theories, the edge singularity of the x-ray 
spectra without any assumption about the form of the propagator of the conduction electrons. 
Although the critical exponent for the edge singularity did not come out exactly here, the 
proposed construction enables one to understand the edge singularity in a more general 
context going beyond the MND model with a single core electron. Especially, in conjuction 
with the method of Anderson and co-workers [ 131, it can be used to investigate the existence 
of the Kondo effect in lanice models. 

I wish to thank Dieter Vollhardt and Peter van Dongen for useful discussions and valuable 
comments. This work was supported in pan by the Sonderforschungsbereich 341 of the 
Deutsche Fmchungsgemeinschaft. 
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